Applied Knot Theory

August 31, 2020

The normalized Kauffman bracket polynomial

B=A¹, d=-A²-A⁻²

(>> = A < >> + A⁻¹ < >) (>) < K > = 2 < K | S > d | S | |

(-A²-A⁻²)

(>> = A < >> + A⁻¹ < >) (>) < = 1 , < O K > =

(-A²-A²) < K >

We define the normalized bracket polynomial
$$f_K = (-A^3)^{-wr(K)}(K)$$
 where $f_K = (-A^3)^{-wr(K)}(K)$ and $f_$

The normalized Kauffman bracket polynomial

The normalized bracket polynomial is invariant under ambient isotopy. It is a polynomial with positive and negative powers, these are called Laurent polynomials.

Laurent polynomials.

$$wr(k)$$
 and $\langle k \rangle$ are invarionst under $RII, RIII$
 $f_k := (-A^3)^{-wr(k)} \langle k \rangle$ will also be invarionat under $RII, RIII$

what about RI ?

 $\Rightarrow f_k(\mathcal{F}) = (-A^3)^{-wr(\mathcal{F})} \langle \mathcal{F} \rangle = (-A^3)^{-(1+wr(\mathcal{F}))}(-A^3) \langle - \rangle = (-A^3)^{-(1+wr(\mathcal{F}))} \langle - \rangle = f_k(\mathcal{F})$

The normalized Kauffman bracket polynomial of mirror

images
$$f_{k} = (-A^{3})^{-\frac{\omega rCk}{2}} < K > \qquad \text{(5)}$$

Let K, K^* denote a knot and its mirror image.

Note that a crossing change in a diagram gives a switch of roles of
$$A$$
 and A^{-1} in the polynomial. $\langle \times \rangle = A \langle \times \rangle + A^{-1} \langle \times \rangle$

So, we have $\langle K^* \rangle (A) = \langle K \rangle (A^{-1})$ <次フ=A-1<2>+A<)(> and $f_{K^*}(A) = f_K(A^{-1})$.

Thus, if
$$f_K(A) \neq f_K(A^{-1})$$
, then K is not ambient isotopic to K^* .

So we can detect chirality!
$$f_{K^*}(A) = (-A^3)^{-\omega_{\Gamma}(K^*)} < K^* \times A = (-A^3)^{-\omega_{\Gamma}(K)} < K \times (A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C > = A^4 + A^{-12} - A^{-16} = f_{K^*}(A^{-1})$$

$$= (-A^3)^{-3} < C >$$

The Jones polynomial

$$V_{K}(t) = P_{K}(t^{-1/4})$$
 Jones palynomial A= $t^{1/4}$

The Jones polynomial $V_K(t)$ is a Laurent polynomial in t assigned to an oriented link K so that the following properties are satisfied:

(1) $V_K(t)$ is invocional whole ambient isotopy

(3)
$$t^{-1} \sqrt{3} - t \sqrt{3} = (1 - \frac{1}{4}) \cdot \sqrt{3}$$

$$\frac{Pf. (1) V_{k}(+1) = f_{k} (+^{-1/4}) \text{ which is invarions}}{(2) V_{b}(+1) = f_{b} (+^{-1/4}) = (-(+^{-1/4})^{2})^{-\omega r(b)} < 0 > = 1}$$

$$\frac{(3)}{(3)} < \times > = A < \times > + B <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A <)(> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A < > (> ?$$

$$\frac{(3)}{(3)} < \times > = B < \times > + A$$

The Jones polynomial

Let
$$w = wr(2)$$
. Then $wr(2) = w+1$

Let $w = wr(2)$. Then $wr(2) = w+1$

Multiply (x) by $w = (-A^3)^{-1}$

A $(-A^3)^{-1} = (A^2 - A^2)^{-1}$

A $(-A^3)^{-1} = (A^2 - A^2)^{-1}$

A $(-A^3)^{-1} = (A^2 - A^2)^{-1}$

And $(-A^3)^{-1} = (A^3 - A^3)^{-1}$

And

The Jones polynomial

$$V_K(t) = f_K(t^{-1/4})$$

Jones polynomial

Let K be a link, let K_1, \ldots, K_n be its components Let K' be a link

KI gloes not depe

The writhe of the diagnorm of

obtained from K by reversing the direction of one component. Let $\lambda = lk(K_1, K - K_1)$ be the total linking number of K_1 with the rest of K. Then $V_{K'}(t) = t^{-3\lambda}V_K(t)$.

Proof: The effect of reversing of direction of K_1 on the writhe of the link:

On a diagram: w(K)=w(K-K1)+w(K,)+> signer

w(K1) = w(K-K,) + w(K)-2 Place i ALiv IX w (K1) = w (K) - 22 K, omd

= w(K) _ A Ok(K)x-K,) w(K)= w(k)-42 , Since < K>=<K> We ger frich = (-A3)4x fr(A)